123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- from fastapi import FastAPI, Request
- from fastapi.middleware.cors import CORSMiddleware
- from pydantic import BaseModel
- from paddleocr import PaddleOCR
- from core.direction import AngleDetector
- from sx_utils.sximage import *
- from sx_utils.sxtime import sxtimeit
- from sx_utils.sxweb import web_try
- from core.ocr import CetOcr
- import os
- # 导入一些包
- app = FastAPI()
- origins = ["*"]
- # CORS 跨源资源共享
- app.add_middleware(
- CORSMiddleware,
- allow_origins=origins,
- allow_credentials=True,
- allow_methods=["*"],
- allow_headers=["*"],
- )
- # templates = Jinja2Templates(directory='templates')
- use_gpu = False
- if os.getenv('USE_CUDA') == 'gpu':
- use_gpu = True
- print(f'use gpu: {use_gpu}')
- # 初始化ocr模型和后处理模型
- # 分类
- # ocr = PaddleOCR(use_angle_cls=True,
- # # 方向
- # rec_model_dir="./idcard_rec_infer/",
- # det_model_dir="./idcard_det_infer/",
- # cls_model_dir="idcard_cls_infer",
- # # 识别
- # rec_algorithm='CRNN',
- # ocr_version='PP-OCRv2',
- # # 中文字典
- # rec_char_dict_path="./ppocr_keys_v1.txt", lang="ch",
- # use_gpu=use_gpu,
- # # 预训练-->效果不明显
- # # 网络不够大、不够深
- # # 数据集普遍较小,batch size普遍较小
- # warmup=True)
- # ocr = PaddleOCR(use_angle_cls=True,
- # use_gpu=use_gpu)
- ocr = PaddleOCR(use_angle_cls=True,
- use_gpu=use_gpu,
- det_db_unclip_ratio=2.5,
- det_db_thresh=0.1,
- det_db_box_thresh=0.3,
- warmup=True)
- #
- # ocr = PaddleOCR(use_angle_cls=True,
- # rec_model_dir='./ch_ppocr_server_v2.0_rec_infer',
- # det_model_dir='./ch_ppocr_server_v2.0_det_infer',
- # cls_model_dir='./idcard_cls_infer',
- # ocr_version='PP-OCRv2',
- # rec_algorithm='CRNN',
- # use_gpu=use_gpu,
- # det_db_unclip_ratio=2.5,
- # det_db_thresh=0.1,
- # det_db_box_thresh=0.3,
- # warmup=True)
- # 初始化 角度检测器 对象
- ad = AngleDetector(ocr)
- # 初始化 身份证ocr识别 对象
- m = CetOcr(ocr, ad)
- # Get 健康检查
- @app.get("/ping")
- def ping():
- return "pong!"
- # 解析传入的 json对象
- class CetInfo(BaseModel):
- image: str
- # /ocr_system/bankcard 银行卡
- # /ocr_system/regbook 户口本
- # /ocr_system/schoolcert 学信网
- # Post 接口
- # 计算耗时
- # 异常处理
- @app.post("/ocr_system/cet")
- @sxtimeit
- @web_try()
- # 传入=> base64码 -> np
- # 返回=> 检测到到结果 -> (conf, angle, parser, image_type)
- def cet(request: Request, cer: CetInfo):
- image = base64_to_np(cer.image)
- return m.predict(image)
- if __name__ == '__main__':
- import uvicorn
- import argparse
- parser = argparse.ArgumentParser()
- parser.add_argument('--host', default='0.0.0.0')
- parser.add_argument('--port', default=8080)
- opt = parser.parse_args()
- app_str = 'server:app' # make the app string equal to whatever the name of this file is
- uvicorn.run(app_str, host=opt.host, port=int(opt.port), reload=True)
|