import json from base64 import b64decode import cv2 import numpy as np from fastapi import FastAPI, Request from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from paddleocr import PaddleOCR, PPStructure from sx_utils.sxweb import * from sx_utils.sximage import * import os # 初始化app app = FastAPI() origins = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) use_gpu = False if os.getenv('USE_CUDA') == 'gpu': use_gpu = True print(f'use gpu: {use_gpu}') # 初始化模型 table_engine = PPStructure(layout=False, table=True, show_log=True, table_model_dir="/Users/sxkj/opt/python-workspace/yili-ocr/ocr-table/SLANet/") class TableInfo(BaseModel): image: str @app.get("/ping") def ping(): return 'pong!' @app.post("/ocr_system/table") @web_try() def table(image: TableInfo): img = base64_to_np(image.image) res = table_engine(img) return res[0]['res'] if __name__ == '__main__': import uvicorn import argparse parser = argparse.ArgumentParser() parser.add_argument('--host', default='0.0.0.0') parser.add_argument('--port', default=8080) opt = parser.parse_args() app_str = 'server:app' # make the app string equal to whatever the name of this file is uvicorn.run(app_str, host=opt.host, port=int(opt.port), reload=True)