|
@@ -1,3 +1,4 @@
|
|
|
+import copy
|
|
|
import re
|
|
|
from itertools import chain
|
|
|
from pathlib import Path
|
|
@@ -12,7 +13,7 @@ from YQ_OCR.config import keyDict
|
|
|
|
|
|
url = 'http://192.168.199.107:18087'
|
|
|
url_path = '/ocr_system/identify'
|
|
|
-imgs_path = '/Users/zeke/work/sx/OCR/image_data/样签图片'
|
|
|
+imgs_path = '/Users/zeke/work/sx/OCR/HROCR/to_md/YQ_OCR/img'
|
|
|
|
|
|
|
|
|
# 1. xlsx -> 正确json文件(写入厂家信息)
|
|
@@ -57,16 +58,19 @@ def _parse_result(r): # sourcery skip: dict-comprehension
|
|
|
# 比较两个json文件 并在md文件中写入对比结果
|
|
|
def evaluate_one(xlsx_dict, res_dict):
|
|
|
true_num = 0
|
|
|
+ xlsx_dict_no_space = copy.deepcopy(xlsx_dict)
|
|
|
+ for index, text in enumerate(xlsx_dict_no_space):
|
|
|
+ xlsx_dict_no_space[index] = text.replace(' ', '')
|
|
|
for key_yes in res_dict:
|
|
|
if type(res_dict[key_yes]) is str:
|
|
|
- if Levenshtein_Distance(res_dict[key_yes], xlsx_dict[key_yes]) == 0:
|
|
|
+ if Levenshtein_Distance(res_dict[key_yes], xlsx_dict_no_space[key_yes]) == 0:
|
|
|
table_result.extend([key_yes, xlsx_dict[key_yes], res_dict[key_yes], '✅'])
|
|
|
true_num += 1
|
|
|
else:
|
|
|
table_result.extend([key_yes, xlsx_dict[key_yes], res_dict[key_yes], '❌'])
|
|
|
|
|
|
key_no_dict = {}
|
|
|
- for key_no_xlsx in xlsx_dict['noKeyList']:
|
|
|
+ for key_no_xlsx in xlsx_dict_no_space['noKeyList']:
|
|
|
key_no_dict[key_no_xlsx] = []
|
|
|
for key_no_res in res_dict['noKeyList']:
|
|
|
key_no_dict[key_no_xlsx].append((Levenshtein_Distance(key_no_xlsx, key_no_res), key_no_res))
|