2 Commits c601e36473 ... 309713a1cc

Author SHA1 Message Date
  meishuhuan 309713a1cc Merge branch 'master' of https://gogsb.soaringnova.com/chenguilong/yl-ocr-layout 2 years ago
  meishuhuan 120a5faf02 modified: client.py 2 years ago
5 changed files with 19 additions and 8 deletions
  1. 4 0
      Dockerfile
  2. 2 2
      client.py
  3. 1 1
      requirements.txt
  4. 11 5
      server.py
  5. 1 0
      yolov5

+ 4 - 0
Dockerfile

@@ -104,7 +104,11 @@ RUN git clone https://gitee.com/monkeycc/yolov5.git
 # RUN wget --user=sxkj --password='sx' ftp://192.168.199.208/best2.pt
 # RUN wget --user=sxkj --password='sx' ftp://192.168.199.208/best2.pt
 RUN wget --user=sxkj --password='sx' ftp://192.168.199.208/8-14_layout_model.pt
 RUN wget --user=sxkj --password='sx' ftp://192.168.199.208/8-14_layout_model.pt
 
 
+<<<<<<< HEAD
+ADD . /workspace    
+=======
 ADD . /workspace
 ADD . /workspace
+>>>>>>> c601e364731d7b77166389ec8f65369aff0bceb6
 EXPOSE 8080
 EXPOSE 8080
 
 
 
 

+ 2 - 2
client.py

@@ -13,8 +13,8 @@ from io import BytesIO
 from PIL import Image
 from PIL import Image
 
 
 def send_request(file_list = ['./images/zidane.jpg'], 
 def send_request(file_list = ['./images/zidane.jpg'], 
-                    model_name = 'yolov5s',
-                    img_size = 640,
+                    model_name = 'yolov5x',
+                    img_size = 800,
                     download_image = False):
                     download_image = False):
 
 
     #upload multiple files as list of tuples
     #upload multiple files as list of tuples

+ 1 - 1
requirements.txt

@@ -36,4 +36,4 @@ pandas
 # extras --------------------------------------
 # extras --------------------------------------
 thop  # FLOPS computation
 thop  # FLOPS computation
 pycocotools>=2.0  # COCO mAP
 pycocotools>=2.0  # COCO mAP
-torchvision>=0.8.1
+torchvision>=0.8.1

+ 11 - 5
server.py

@@ -1,3 +1,4 @@
+# -*- coding:utf-8 -*-
 from fastapi import FastAPI, Request, Form, File, UploadFile
 from fastapi import FastAPI, Request, Form, File, UploadFile
 from fastapi.templating import Jinja2Templates
 from fastapi.templating import Jinja2Templates
 from pydantic import BaseModel
 from pydantic import BaseModel
@@ -42,7 +43,7 @@ logger.addHandler(ch)
 
 
 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 bl = torch.cuda.is_available()
 bl = torch.cuda.is_available()
-logger.info(f'是否可使用GPU=======>{bl}')
+#logger.info(f'是否可使用GPU=======>{bl}')
 
 
 app = FastAPI()
 app = FastAPI()
 templates = Jinja2Templates(directory = 'templates')
 templates = Jinja2Templates(directory = 'templates')
@@ -55,6 +56,7 @@ colors = [tuple([random.randint(0, 255) for _ in range(3)]) for _ in range(100)]
 
 
 if model_dict['ocr-layout'] is None:
 if model_dict['ocr-layout'] is None:
           model_dict['ocr-layout'] = model = torch.hub.load(YOLO_DIR, 'custom', path=WEIGHTS, source='local').to(device)
           model_dict['ocr-layout'] = model = torch.hub.load(YOLO_DIR, 'custom', path=WEIGHTS, source='local').to(device)
+#          print(model_dict['ocr-layout'])
           logger.info("========>模型加载成功")
           logger.info("========>模型加载成功")
 
 
 
 
@@ -91,7 +93,7 @@ def drag_and_drop_detect(request: Request):
 def detect_via_web_form(request: Request,
 def detect_via_web_form(request: Request,
                         file_list: List[UploadFile] = File(...),
                         file_list: List[UploadFile] = File(...),
                         model_name: str = Form(...),
                         model_name: str = Form(...),
-                        img_size: int = Form(1824)):
+                        img_size: int = Form(800)):
 
 
     '''
     '''
     Requires an image file upload, model name (ex. yolov5s). Optional image size parameter (Default 1824).
     Requires an image file upload, model name (ex. yolov5s). Optional image size parameter (Default 1824).
@@ -109,7 +111,8 @@ def detect_via_web_form(request: Request,
     #create a copy that corrects for cv2.imdecode generating BGR images instead of RGB
     #create a copy that corrects for cv2.imdecode generating BGR images instead of RGB
     #using cvtColor instead of [...,::-1] to keep array contiguous in RAM
     #using cvtColor instead of [...,::-1] to keep array contiguous in RAM
     img_batch_rgb = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in img_batch]
     img_batch_rgb = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in img_batch]
-
+    print(img_size)
+    print('111111')
     results = model_dict[model_name](img_batch_rgb, size = img_size)
     results = model_dict[model_name](img_batch_rgb, size = img_size)
 
 
     json_results = results_to_json(results,model_dict[model_name])
     json_results = results_to_json(results,model_dict[model_name])
@@ -139,7 +142,7 @@ def detect_via_web_form(request: Request,
 def detect_via_api(request: Request,
 def detect_via_api(request: Request,
                 file_list: List[UploadFile] = File(...),
                 file_list: List[UploadFile] = File(...),
                 model_name: str = Form(...),
                 model_name: str = Form(...),
-                img_size: Optional[int] = Form(1824),
+                img_size: Optional[int] = Form(800),
                 download_image: Optional[bool] = Form(False)):
                 download_image: Optional[bool] = Form(False)):
 
 
     '''
     '''
@@ -159,7 +162,10 @@ def detect_via_api(request: Request,
     #create a copy that corrects for cv2.imdecode generating BGR images instead of RGB,
     #create a copy that corrects for cv2.imdecode generating BGR images instead of RGB,
     #using cvtColor instead of [...,::-1] to keep array contiguous in RAM
     #using cvtColor instead of [...,::-1] to keep array contiguous in RAM
     img_batch_rgb = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in img_batch]
     img_batch_rgb = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in img_batch]
-
+    print('111111')
+    print(img_size)
+    img_size= 800
+    print(img_size)
     results = model_dict[model_name](img_batch_rgb, size = img_size)
     results = model_dict[model_name](img_batch_rgb, size = img_size)
     json_results = results_to_json(results,model_dict[model_name])
     json_results = results_to_json(results,model_dict[model_name])
 
 

+ 1 - 0
yolov5

@@ -0,0 +1 @@
+Subproject commit 7639e4c7efc6d660fefcea5589d467e88afd8b6c