# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time class Times(object): def __init__(self): self.time = 0. # start time self.st = 0. # end time self.et = 0. def start(self): self.st = time.time() def end(self, repeats=1, accumulative=True): self.et = time.time() if accumulative: self.time += (self.et - self.st) / repeats else: self.time = (self.et - self.st) / repeats def reset(self): self.time = 0. self.st = 0. self.et = 0. def value(self): return round(self.time, 4) class Timer(Times): def __init__(self, with_tracker=False): super(Timer, self).__init__() self.with_tracker = with_tracker self.preprocess_time_s = Times() self.inference_time_s = Times() self.postprocess_time_s = Times() self.tracking_time_s = Times() self.img_num = 0 def info(self, average=False): pre_time = self.preprocess_time_s.value() infer_time = self.inference_time_s.value() post_time = self.postprocess_time_s.value() track_time = self.tracking_time_s.value() total_time = pre_time + infer_time + post_time if self.with_tracker: total_time = total_time + track_time total_time = round(total_time, 4) print("------------------ Inference Time Info ----------------------") print("total_time(ms): {}, img_num: {}".format(total_time * 1000, self.img_num)) preprocess_time = round(pre_time / max(1, self.img_num), 4) if average else pre_time postprocess_time = round(post_time / max(1, self.img_num), 4) if average else post_time inference_time = round(infer_time / max(1, self.img_num), 4) if average else infer_time tracking_time = round(track_time / max(1, self.img_num), 4) if average else track_time average_latency = total_time / max(1, self.img_num) qps = 0 if total_time > 0: qps = 1 / average_latency print("average latency time(ms): {:.2f}, QPS: {:2f}".format( average_latency * 1000, qps)) if self.with_tracker: print( "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}, tracking_time(ms): {:.2f}". format(preprocess_time * 1000, inference_time * 1000, postprocess_time * 1000, tracking_time * 1000)) else: print( "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}". format(preprocess_time * 1000, inference_time * 1000, postprocess_time * 1000)) def report(self, average=False): dic = {} pre_time = self.preprocess_time_s.value() infer_time = self.inference_time_s.value() post_time = self.postprocess_time_s.value() track_time = self.tracking_time_s.value() dic['preprocess_time_s'] = round(pre_time / max(1, self.img_num), 4) if average else pre_time dic['inference_time_s'] = round(infer_time / max(1, self.img_num), 4) if average else infer_time dic['postprocess_time_s'] = round(post_time / max(1, self.img_num), 4) if average else post_time dic['img_num'] = self.img_num total_time = pre_time + infer_time + post_time if self.with_tracker: dic['tracking_time_s'] = round(track_time / max(1, self.img_num), 4) if average else track_time total_time = total_time + track_time dic['total_time_s'] = round(total_time, 4) return dic