server.py 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208
  1. from fastapi import FastAPI, Request, Form, File, UploadFile
  2. from fastapi.templating import Jinja2Templates
  3. from pydantic import BaseModel
  4. from typing import List, Optional
  5. from sx_utils import web_try
  6. import cv2
  7. import numpy as np
  8. import torch
  9. import base64
  10. import random
  11. # YOLO_DIR = '/workspace/yolov5'
  12. YOLO_DIR = '/Users/sxkj/opt/python-workspace/yili-ocr/yl-ocr-layout/yolov5'
  13. # WEIGHTS = '/data/yolov5/runs/train/yolov5x_layout_reuslt37/weights/best.pt'
  14. # WEIGHTS = '/workspace/best.pt'
  15. WEIGHTS = '/Users/sxkj/opt/python-workspace/yili-ocr/yl-ocr-layout/best.pt'
  16. device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
  17. app = FastAPI()
  18. templates = Jinja2Templates(directory = 'templates')
  19. model_selection_options = ['ocr-layout']
  20. model_dict = {model_name: None for model_name in model_selection_options} #set up model cache
  21. colors = [tuple([random.randint(0, 255) for _ in range(3)]) for _ in range(100)] #for bbox plotting
  22. ##############################################
  23. #-------------GET Request Routes--------------
  24. ##############################################
  25. @app.get("/")
  26. def home(request: Request):
  27. ''' Returns html jinja2 template render for home page form
  28. '''
  29. return templates.TemplateResponse('home.html', {
  30. "request": request,
  31. "model_selection_options": model_selection_options,
  32. })
  33. @app.get("/drag_and_drop_detect")
  34. def drag_and_drop_detect(request: Request):
  35. ''' drag_and_drop_detect detect page. Uses a drag and drop
  36. file interface to upload files to the server, then renders
  37. the image + bboxes + labels on HTML canvas.
  38. '''
  39. return templates.TemplateResponse('drag_and_drop_detect.html',
  40. {"request": request,
  41. "model_selection_options": model_selection_options,
  42. })
  43. ##############################################
  44. #------------POST Request Routes--------------
  45. ##############################################
  46. @app.post("/")
  47. def detect_via_web_form(request: Request,
  48. file_list: List[UploadFile] = File(...),
  49. model_name: str = Form(...),
  50. img_size: int = Form(1824)):
  51. '''
  52. Requires an image file upload, model name (ex. yolov5s). Optional image size parameter (Default 1824).
  53. Intended for human (non-api) users.
  54. Returns: HTML template render showing bbox data and base64 encoded image
  55. '''
  56. #assume input validated properly if we got here
  57. if model_dict[model_name] is None:
  58. model_dict[model_name] = model = torch.hub.load(YOLO_DIR, 'custom', path=WEIGHTS, source='local').to(device)
  59. img_batch = [cv2.imdecode(np.fromstring(file.file.read(), np.uint8), cv2.IMREAD_COLOR)
  60. for file in file_list]
  61. #create a copy that corrects for cv2.imdecode generating BGR images instead of RGB
  62. #using cvtColor instead of [...,::-1] to keep array contiguous in RAM
  63. img_batch_rgb = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in img_batch]
  64. results = model_dict[model_name](img_batch_rgb, size = img_size)
  65. json_results = results_to_json(results,model_dict[model_name])
  66. img_str_list = []
  67. #plot bboxes on the image
  68. for img, bbox_list in zip(img_batch, json_results):
  69. for bbox in bbox_list:
  70. label = f'{bbox["class_name"]} {bbox["confidence"]:.2f}'
  71. plot_one_box(bbox['bbox'], img, label=label,
  72. color=colors[int(bbox['class'])], line_thickness=3)
  73. img_str_list.append(base64EncodeImage(img))
  74. #escape the apostrophes in the json string representation
  75. encoded_json_results = str(json_results).replace("'",r"\'").replace('"',r'\"')
  76. return templates.TemplateResponse('show_results.html', {
  77. 'request': request,
  78. 'bbox_image_data_zipped': zip(img_str_list,json_results), #unzipped in jinja2 template
  79. 'bbox_data_str': encoded_json_results,
  80. })
  81. @app.post("/detect")
  82. @web_try()
  83. def detect_via_api(request: Request,
  84. file_list: List[UploadFile] = File(...),
  85. model_name: str = Form(...),
  86. img_size: Optional[int] = Form(1824),
  87. download_image: Optional[bool] = Form(False)):
  88. '''
  89. Requires an image file upload, model name (ex. yolov5s).
  90. Optional image size parameter (Default 1824)
  91. Optional download_image parameter that includes base64 encoded image(s) with bbox's drawn in the json response
  92. Returns: JSON results of running YOLOv5 on the uploaded image. If download_image parameter is True, images with
  93. bboxes drawn are base64 encoded and returned inside the json response.
  94. Intended for API usage.
  95. '''
  96. if model_dict[model_name] is None:
  97. model_dict[model_name] = model = torch.hub.load(YOLO_DIR, 'custom', path=WEIGHTS, source='local').to(device)
  98. img_batch = [cv2.imdecode(np.fromstring(file.file.read(), np.uint8), cv2.IMREAD_COLOR)
  99. for file in file_list]
  100. #create a copy that corrects for cv2.imdecode generating BGR images instead of RGB,
  101. #using cvtColor instead of [...,::-1] to keep array contiguous in RAM
  102. img_batch_rgb = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in img_batch]
  103. results = model_dict[model_name](img_batch_rgb, size = img_size)
  104. json_results = results_to_json(results,model_dict[model_name])
  105. if download_image:
  106. for idx, (img, bbox_list) in enumerate(zip(img_batch, json_results)):
  107. for bbox in bbox_list:
  108. label = f'{bbox["class_name"]} {bbox["confidence"]:.2f}'
  109. plot_one_box(bbox['bbox'], img, label=label,
  110. color=colors[int(bbox['class'])], line_thickness=3)
  111. payload = {'image_base64':base64EncodeImage(img)}
  112. json_results[idx].append(payload)
  113. encoded_json_results = str(json_results).replace("'",r'"')
  114. return encoded_json_results
  115. ##############################################
  116. #--------------Helper Functions---------------
  117. ##############################################
  118. def results_to_json(results, model):
  119. ''' Converts yolo model output to json (list of list of dicts)'''
  120. return [
  121. [
  122. {
  123. "class": int(pred[5]),
  124. "class_name": model.model.names[int(pred[5])],
  125. "bbox": [int(x) for x in pred[:4].tolist()], #convert bbox results to int from float
  126. "confidence": float(pred[4]),
  127. }
  128. for pred in result
  129. ]
  130. for result in results.xyxy
  131. ]
  132. def plot_one_box(x, im, color=(128, 128, 128), label=None, line_thickness=3):
  133. # Directly copied from: https://github.com/ultralytics/yolov5/blob/cd540d8625bba8a05329ede3522046ee53eb349d/utils/plots.py
  134. # Plots one bounding box on image 'im' using OpenCV
  135. assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to plot_on_box() input image.'
  136. tl = line_thickness or round(0.002 * (im.shape[0] + im.shape[1]) / 2) + 1 # line/font thickness
  137. c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
  138. cv2.rectangle(im, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
  139. if label:
  140. tf = max(tl - 1, 1) # font thickness
  141. t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
  142. c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
  143. cv2.rectangle(im, c1, c2, color, -1, cv2.LINE_AA) # filled
  144. cv2.putText(im, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
  145. def base64EncodeImage(img):
  146. ''' Takes an input image and returns a base64 encoded string representation of that image (jpg format)'''
  147. _, im_arr = cv2.imencode('.jpg', img)
  148. im_b64 = base64.b64encode(im_arr.tobytes()).decode('utf-8')
  149. return im_b64
  150. if __name__ == '__main__':
  151. import uvicorn
  152. import argparse
  153. parser = argparse.ArgumentParser()
  154. parser.add_argument('--host', default = 'localhost')
  155. parser.add_argument('--port', default = 8080)
  156. parser.add_argument('--precache-models', action='store_true',
  157. help='Pre-cache all models in memory upon initialization, otherwise dynamically caches models')
  158. opt = parser.parse_args()
  159. # if opt.precache_models:
  160. # model_dict = {model_name: torch.hub.load('ultralytics/yolov5', model_name, pretrained=True)
  161. # for model_name in model_selection_options}
  162. app_str = 'server:app' #make the app string equal to whatever the name of this file is
  163. uvicorn.run(app_str, host= opt.host, port=int(opt.port), reload=True)