123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- from mdutils.mdutils import MdUtils
- import os
- import cv2
- import numpy as np
- import requests
- # url = "http://192.168.199.249:4869"
- # 标签是经过归一化的,需要变回来
- # xywh格式 ---> box四个顶点的坐标
- def xywh2lrbt(img_w, img_h, box):
- c, x, y, w, h = float(box[0]), float(box[1]), float(box[2]), float(box[3]), float(box[4])
- x = x * img_w # 中心坐标x
- w = w * img_w # box的宽
- y = y * img_h # 中心坐标y
- h = h * img_h # box的高
- lt_x, lt_y = x - w / 2, y - h / 2 # left_top_x, left_top_y
- lb_x, lb_y = x - w / 2, y + h / 2 # left_bottom_x, left_bottom_y
- rb_x, rb_y = x + w / 2, y + h / 2 # right_bottom_x, right_bottom_y
- rt_x, rt_y = x + w / 2, y - h / 2 # right_top_x, right_bottom_y
- lrbt = [[lt_x, lt_y], [lb_x, lb_y], [rb_x, rb_y], [rt_x, rt_y]]
- return lrbt, c
- def IOU(rect1, rect2):
- xmin1, ymin1, xmax1, ymax1 = rect1
- xmin2, ymin2, xmax2, ymax2 = rect2
- s1 = (xmax1 - xmin1) * (ymax1 - ymin1)
- s2 = (xmax2 - xmin2) * (ymax2 - ymin2)
- sum_area = s1 + s2
- left = max(xmin2, xmin1)
- right = min(xmax2, xmax1)
- top = max(ymin2, ymin1)
- bottom = min(ymax2, ymax1)
- if left >= right or top >= bottom:
- return 0
- intersection = (right - left) * (bottom - top)
- return intersection / (sum_area - intersection) * 1.0
- def send_requests():
- return result
- img_path = "./images/test1.jpg"
- b_img_list = []
- b_img_list.append(('file_list', ('image.jpeg', open(img_path, 'rb'), 'image/jpeg')))
- payload = {'model_name': 'ocr-layout', 'img_size': 800, 'download_image': False}
- response = requests.request("POST", "http://192.168.199.107:18089/detect", headers={}, data=payload, files=b_img_list)
- result = eval(str(response.text))
- result = eval(str(result['result']))
- # print(len(result))
- mdFile = MdUtils(file_name='yolov5_yili_0818_1', title='Markdown File Example')
- mdFile.new_header(level=1, title="yolov5预测结果")
- list_item = ["ori_cla", "predict_cla", "cut_ori_img", "cut_predict_img", "isTrue"]
- # list_item.extend(["ori_cla", "predict_cla", "cut_ori_img", "cut_predict_img", "isTrue"])
- # for i in range(len(result[0])):
- # # print(stencil_list[0][i])
- #
- # predict_cla = result[0][i]["class"]
- # 获取真实的标签
- label = "./images/test1.txt"
- with open(label, mode="r", encoding="utf-8") as f:
- lines = f.readlines()
- img = cv2.imread(img_path)
- img_h, img_w, _ = img.shape
- arr_label = [] # labels的边界框,存储四个顶点坐标
- ori_clas = [] # label的真实类别
- for line in lines:
- line = line.split(" ")
- lrbt, c = xywh2lrbt(img_w, img_h, line)
- arr_label.append(lrbt)
- ori_clas.append(c)
- # cut_imgs = [] # 被剪切的图像
- num = 0
- for i in range(len(arr_label)):
- lt_x, lt_y = int(arr_label[i][0][0]), int(arr_label[i][0][1])
- rb_x, rb_y = int(arr_label[i][2][0]), int(arr_label[i][2][1])
- rect1 = [lt_x, lt_y, rb_x, rb_y]
- cut_ori_img = img[lt_y:rb_y, lt_x:rb_x, :]
- save_cut_ori_img = "./images/cut_imgs/" + str(i) + "_" + str(num) + ".jpg"
- cv2.imwrite(save_cut_ori_img, cut_ori_img)
- save_cut_ori_img = mdFile.new_inline_image(text='', path=save_cut_ori_img)
- num += 1
- ori_cla = ori_clas[i]
- for j in range(len(result[0])):
- res = []
- predict_cla = result[0][j]['class']
- if ori_cla == predict_cla:
- rect2 = result[0][j]['bbox']
- iou = IOU(rect1, rect2)
- if iou >= 0.5:
- cut_predict_img = img[rect2[1]:rect2[3], rect2[0]:rect2[2], :]
- save_cut_predict_img = "./images/cut_imgs/" + str(j) + ".jpg"
- cv2.imwrite(save_cut_predict_img, cut_predict_img)
- save_cut_predict_img = mdFile.new_inline_image(text='', path=save_cut_predict_img)
- isTrue = True
- list_item.extend([ori_cla, predict_cla, save_cut_ori_img, save_cut_predict_img, isTrue])
- # list_item.extend(res)
- break
- elif j == len(result[0]) - 1:
- isTrue = False
- list_item.extend([ori_cla, predict_cla, save_cut_ori_img, "", isTrue])
- # res.append([ori_cla, predict_cla, "", "", isTrue])
- list_item.extend(res)
- #
- # print(list_item)
- # print(len(arr_label))
- print(len(list_item))
- # print(len(result[0]))
- mdFile.new_line()
- mdFile.new_table(columns=5, rows=len(list_item)//5, text=list_item, text_align='center')
- mdFile.create_md_file()
- if __name__ == "__main__":
- images_path = "./test_imgs/images/"
- labels_path = "./test_imgs/labels/"
- list_images = os.listdir(images_path)
- list_labels = os.listdir(labels_path)
- for image in list_images:
- img_name = image.split(".")[0]
- mdFile = MdUtils(file_name='yq_0819_' + str(img_name), title='yq_0819_' + str(img_name) + '_iou>=0.5')
- #
- # images = os.listdir(images_path)
- # labels = os.listdir(labels_path)
- #
- # assert len(images) == len(labels)
- #
- # for i in range(len(images)):
- # image = images[i]
- # label = labels[i]
- # with open(labels_path + label, mode="r", encoding="utf-8") as f:
- # lines = f.readlines()
- #
- # img = images_path + images[i]
- # img = cv2.imread(img)
- # img_h, img_w, _ = img.shape
- #
- # arr_label = [] # labels的边界框,存储四个顶点坐标
- # ori_cla = [] # label的真实类别
- # for line in lines:
- # line = line.split(" ")
- # lrbt, c = xywh2lrbt(img_w, img_h, line)
- # arr_label.append(lrbt)
- # ori_cla.append(c)
- #
- # cut_path = "./valid_img/cut/"
- #
- # for i in range(len(arr_label)):
- # lt_x, lt_y = int(arr_label[i][0][0]), int(arr_label[i][0][1])
- # rb_x, rb_y = int(arr_label[i][2][0]), int(arr_label[i][2][1])
- # cut_img = img[lt_y:rb_y, lt_x:rb_x, :]
- # cv2.imwrite(cut_path + str(i) + ".jpg", cut_img)
- #
- # box = np.reshape(np.array(arr_label[i]), [-1, 1, 2]).astype(np.int32)
- # img = cv2.polylines(np.array(img), [box], True, (255, 0, 0), 5)
- #
- #
- #
- #
- # mdFile.create_md_file()
- #
- #
|