import os import stat import time from app.core.airflow.task import * from app.core.airflow.af_util import get_job_path from app.schemas import AirflowJob class AirflowJobSubmitter: @staticmethod def submit_dag(item: AirflowJob): m_compilers = {'python': PythonTaskCompiler, 'datax': DataXTaskCompiler, 'sparks': SparksTaskCompiler, 'java': JavaTaskCompiler} nodes = [m_compilers[task.task_type](item=task).translate(job_id=item.id, task_mode=item.job_mode or 1) for task in item.tasks if task.task_type != 'sparks'] spark_nodes = [SparksTaskCompiler(item=task).translate(job_id=item.id, task_mode=item.job_mode or 1) for task in item.tasks if task.task_type == 'sparks'] edges = [] for edge in item.dependence: edges.append({"source_operator_name": f'op_{edge[0]}', "target_operator_name": f'op_{edge[1]}'}) # # m_interval = { # "None": "None", # "@once": "@once", # "0 * * * *": "@hourly", # "0 0 * * *": "@daily", # "0 0 * * 0": "@weekly", # "0 0 1 * *": "@monthly", # "0 0 1 1 *": "@yearly" # } # print(f" image pull key is : {config.get('K8S', 'image_pull_key')}") parameters = {'nodes': nodes, 'spark_nodes': spark_nodes, 'edges': edges, 'dag_id': f'dag_{item.id}', 'user_name': item.user_id, 'job_id': item.id, 'trigger_status': bool(item.trigger_status), 'interval': item.cron if item.cron != 'None' else None, 'af_backend_uri': config.get('AF_BACKEND', 'uri'), 'image_pull_key': config.get('K8S', 'image_pull_key', fallback=None), 'enable_notify': True } # env = Environment( # loader=PackageLoader('app.core.airflow'), # autoescape=select_autoescape() # ) # template = env.get_template("dag_template.py.jinja2") # dag_content = template.render(parameters) # print(f'finish build:{dag_content}') # # output_path = get_job_path(job_id=item.id) # with open(output_path, "w") as fh: # fh.write(dag_content) # # os.chmod(output_path, stat.S_IRWXO | stat.S_IRWXG | stat.S_IRWXU) # print(f'write dag to {output_path}') AirflowJobSubmitter.generate_dag_on_airflow(parameters=parameters, save_path=get_job_path(job_id=item.id)) @staticmethod def generate_dag_on_airflow(parameters, save_path): env = Environment( loader=PackageLoader('app.core.airflow'), autoescape=select_autoescape() ) template = env.get_template("dag_template.py.jinja2") dag_content = template.render(parameters) print(f'finish build:{dag_content}') with open(save_path, "w") as fh: fh.write(dag_content) os.chmod(save_path, stat.S_IRWXO | stat.S_IRWXG | stat.S_IRWXU) print(f'write dag to {save_path}') @staticmethod def auto_submit_data_transfer(): job_id = 0 user_id = 0 spark_task_demo = SparksTaskCompiler(item=None) spark_nodes = [ { "sub_nodes": [{ "name": 'read_and_save', "id": 0, "image": spark_task_demo.default_image, "cmds": ['/bin/bash', '-c', spark_task_demo.cmd_str(name='spark_data_transfer')], "env": {"SCRIPT": spark_task_demo.render_spark_script( parameters={"hive_metastore_uris": config.get('HIVE_METASTORE', 'uris')}, template_file="data_transfer_dag_template.py.jinja2") }, }], "edges": [], "name": 'data_save', "desc": 'task for data saving', "id": 0, } ] print(spark_nodes[0]['sub_nodes'][0]['env']['SCRIPT']) parameters = {'nodes': [], 'spark_nodes': spark_nodes, 'edges': [], 'dag_id': f'dag_{job_id}', 'user_name': user_id, 'job_id': job_id, 'trigger_status': False, 'interval': None, 'af_backend_uri': config.get('AF_BACKEND', 'uri'), 'image_pull_key': config.get('K8S', 'image_pull_key', fallback=None), 'enable_notify':False } AirflowJobSubmitter.generate_dag_on_airflow(parameters=parameters, save_path=get_job_path(job_id=job_id)) print('create data transfer job success!') # @staticmethod # def auto_submit_data_transfer2(): # # name: str # # file_urls: Optional[List[str]] = [] # # script: str # # cmd: Optional[str] = "" # # cmd_parameters: str # # envs: Optional[Dict[str, str]] = {} # # run_image: str # # task_type: str # # df_task = AirflowTask(name='data_save', task_type='sparks', file_urls=[], script='', cmd='', env={}) # # id: int # # job_type: int # # create_time: int # # update_time: int # # user_id: int # # job_mode: int # # tasks: List[AirflowTask] # # name: str # # dependence: List = [] # # cron: str # # desc: str # # route_strategy: str # # block_strategy: str # # executor_timeout: int # # executor_fail_retry_count: int # # trigger_status: int # # job_item = AirflowJob(id=0, job_type=1, tasks=[df_task], create_time=int(time.time()), user_id=0, job_mode=1, # name='data_transfer', dependence=[], cron="None", trigger_status=0)