from pyspark.sql.types import * from pyspark.ml.classification import LogisticRegression from pyspark.ml.feature import VectorAssembler from pyspark.ml import Pipeline from pyspark.sql.functions import udf, col from pyspark.sql import DataFrame def to_array(col): def to_array_(v): return v.toArray().tolist() return udf(to_array_, ArrayType(DoubleType())).asNondeterministic()(col) def main_func(train_df: DataFrame, test_df: DataFrame, spark): feat_cols = ['feature1', 'feature2', 'feature3', 'feature4', 'feature5', 'feature6', 'feature7', 'feature8', 'feature9'] vector_assembler = VectorAssembler().setInputCols(feat_cols).setOutputCol("features") #### 训练 #### print("step 1") lr = LogisticRegression(regParam=0.01, maxIter=100) # regParam 正则项参数 pipeline = Pipeline(stages=[vector_assembler, lr]) model = pipeline.fit(train_df) # 打印参数 print("\n-------------------------------------------------------------------------") print("LogisticRegression parameters:\n" + lr.explainParams() + "\n") print("-------------------------------------------------------------------------\n") #### 预测, 保存结果 #### print("step 2") labels_and_preds = model.transform(test_df).withColumn("probability_xj", to_array(col("probability"))[1]) \ .select("uuid", "label", "prediction", "probability_xj") return [labels_and_preds]