task.py 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192
  1. import json
  2. from app.core.airflow.uri import spark_result_tb_name
  3. from app.schemas import AirflowTask
  4. from jinja2 import Environment, PackageLoader, select_autoescape
  5. from app.common.minio import FileHandler
  6. class TaskCompiler:
  7. def __init__(self, item: AirflowTask):
  8. self.task = item
  9. self.default_image = None
  10. self.default_cmd = None
  11. @staticmethod
  12. def render_spark_script(parameters, template_file):
  13. env = Environment(
  14. loader=PackageLoader('app.core.airflow'),
  15. autoescape=select_autoescape()
  16. )
  17. template = env.get_template(template_file)
  18. return template.render(parameters)
  19. def translate(self, job_id, task_mode=1):
  20. return {'image': self.task.run_image or self.default_image,
  21. 'cmds': ["/bin/bash", "-c", f"{self.task.cmd or self.default_cmd} "],
  22. 'script': self.task.script,
  23. 'id': f'{self.task.id}',
  24. 'env': {**{"SCRIPT": self.task.script}, **self.task.envs},
  25. 'operator_name': f'op_{self.task.id}',
  26. 'name': self.task.name,
  27. 'desc': ""
  28. }
  29. @staticmethod
  30. def write_to_oss(oss_path, context, bucket='mytest'):
  31. if isinstance(context, str):
  32. context = bytes(context, 'utf-8')
  33. minio_handler = FileHandler(bucket_name=bucket)
  34. return minio_handler.put_byte_file(file_name=oss_path, file_content=context)
  35. class JavaTaskCompiler(TaskCompiler):
  36. def __init__(self, item: AirflowTask):
  37. super(JavaTaskCompiler, self).__init__(item)
  38. self.default_image = 'SXKJ:32775/java:1.0'
  39. self.default_cmd = "echo \"$SCRIPT\" > run.py && python run.py"
  40. self.task.cmd = self.task.cmd or self.default_cmd
  41. tar_name = self.task.file_urls[0].split('/')[-1].split('_')[-1]
  42. self.task.cmd = f'curl {"http://minio.default:9000"}/{self.task.file_urls[0]} --output {tar_name} && {self.task.cmd}'
  43. class PythonTaskCompiler(TaskCompiler):
  44. def __init__(self, item: AirflowTask):
  45. super(PythonTaskCompiler, self).__init__(item)
  46. self.default_image = 'SXKJ:32775/pod_python:1.1'
  47. self.default_cmd = "echo \"$SCRIPT\" > run.py && python run.py"
  48. class DataXTaskCompiler(TaskCompiler):
  49. def __init__(self, item: AirflowTask):
  50. super(DataXTaskCompiler, self).__init__(item)
  51. self.default_image = 'SXKJ:32775/pod_datax:0.9'
  52. self.default_cmd = f"cd datax/bin && echo \"$SCRIPT\" > transform_datax.py &&cat transform_datax.py && " \
  53. f"python3 transform_datax.py && cat config.json && $HOME/conda/envs/py27/b" \
  54. f"in/python datax.py {self.task.cmd_parameters} config.json "
  55. def translate(self, job_id, task_mode=1):
  56. print(f'{self.task.envs}')
  57. script_str = self.render_spark_script(
  58. parameters={'script': self.task.script,
  59. 'first_begin_time': self.task.envs.get('first_begin_time', None),
  60. 'last_key': self.task.envs.get('last_key', None),
  61. 'current_key': self.task.envs.get('current_key', None),
  62. 'partition_key': self.task.envs.get('partition_key', None),
  63. 'partition_word': self.task.envs.get('partition_word', None),
  64. 'partition_format': self.task.envs.get('partition_format', None),
  65. 'partition_diff': self.task.envs.get('partition_diff', None),
  66. },
  67. template_file="transform_datax.py.jinja2")
  68. res = {'image': self.task.run_image or self.default_image,
  69. 'cmds': ["/bin/bash", "-c", f"{self.task.cmd or self.default_cmd} "],
  70. 'script': script_str,
  71. 'id': f'{self.task.id}',
  72. 'env': {**{"SCRIPT": script_str}, **self.task.envs},
  73. 'operator_name': f'op_{self.task.id}',
  74. 'name': self.task.name,
  75. 'desc': ""
  76. }
  77. return res
  78. class SparksTaskCompiler(TaskCompiler):
  79. def __init__(self, item: AirflowTask):
  80. super(SparksTaskCompiler, self).__init__(item)
  81. self.default_image = 'SXKJ:32775/jupyter:0.96'
  82. parameters = {"master": "yarn",
  83. "deploy-mode": "cluster",
  84. "driver-memory": "2g",
  85. "driver-cores ": 1,
  86. "executor-memory": "2g",
  87. "executor-cores": 4,
  88. "num-executors": 1,
  89. "archives": "/home/sxkj/bigdata/py37.zip#python3env"
  90. }
  91. spark_config = {'spark.default.parallelism': 2,
  92. "spark.executor.memoryOverhead": "4g",
  93. "spark.driver.memoryOverhead": "2g",
  94. "spark.yarn.maxAppAttempts": 3,
  95. "spark.yarn.submit.waitAppCompletion": "true",
  96. "spark.pyspark.driver.python": "python3env/py37/bin/python",
  97. "spark.yarn.appMasterEnv.PYSPARK_PYTHON": "python3env/py37/bin/python",
  98. "spark.pyspark.python": "python3env/py37/bin/python"
  99. }
  100. param_str = ' '.join([f'--{k} {v}' for k, v in parameters.items()])
  101. param_str += ''.join([f' --conf {k}={v}' for k, v in spark_config.items()])
  102. basic_cmds = "cd /home/sxkj/bigdata && echo \"$SCRIPT\" > run.py && ${SPARK_HOME}/bin/spark-submit"
  103. self.cmd_str = lambda name: f"{basic_cmds} --name {name} {param_str} run.py"
  104. def translate(self, job_id, task_mode=1):
  105. # dag_script = {
  106. # "sub_nodes": [
  107. # {
  108. # "id": "1",
  109. # "name": "SqlNode1",
  110. # "op": "sql",
  111. # "script": "select * from train",
  112. # },
  113. # {
  114. # "id": "2",
  115. # "name": "SqlNode1",
  116. # "op": "sql",
  117. # "script": "select * from test",
  118. # },
  119. # {
  120. # "id": "3",
  121. # "name": "PysparkNode1",
  122. # "op": "pyspark", # or python
  123. # "inputs": {'train': ("1", 0),
  124. # 'test': ("2", 0)
  125. # },
  126. # "script": "import os\n ...",
  127. # },
  128. # ],
  129. # "edges": [
  130. # ("1", "3"),
  131. # ("2", "3")
  132. # ]
  133. # }
  134. infos = json.loads(self.task.script)
  135. sub_nodes = []
  136. skip_nodes = []
  137. for info in infos['sub_nodes']:
  138. if info.get('skip', False):
  139. skip_nodes.append(info["id"])
  140. continue
  141. if info['op'] == 'sql':
  142. inputs = {}
  143. template_file = 'sql_script_template.py.jinja2'
  144. elif info['op'] == 'pyspark':
  145. inputs = {k: spark_result_tb_name(job_id=job_id, task_id=self.task.id, spark_node_id=v[0],
  146. out_pin=v[1], is_tmp=task_mode) for k, v in info['inputs'].items()}
  147. template_file = 'pyspark_script_template.py.jinja2'
  148. else:
  149. continue
  150. outputs = [spark_result_tb_name(job_id=job_id, task_id=self.task.id, spark_node_id=info['id'],
  151. out_pin=0, is_tmp=task_mode)]
  152. sub_node = {
  153. 'id': f'{self.task.id}_{info["id"]}',
  154. 'name': info['name'],
  155. 'env': {
  156. 'SCRIPT': self.render_spark_script(
  157. parameters={'script': info['script'], 'inputs': inputs, 'outputs': outputs},
  158. template_file=template_file),
  159. },
  160. 'cmds': ['/bin/bash', '-c', self.cmd_str(name=f'spark_{self.task.id}_{info["id"]}')],
  161. 'image': "SXKJ:32775/jupyter:0.96",
  162. }
  163. sub_nodes.append(sub_node)
  164. edges = []
  165. for (source, sink) in infos['edges']:
  166. if source not in skip_nodes and sink not in skip_nodes:
  167. edges.append((f'{self.task.id}_{source}', f'{self.task.id}_{sink}'))
  168. return {
  169. "id": self.task.id,
  170. "sub_nodes": sub_nodes,
  171. "edges": edges,
  172. 'name': self.task.name,
  173. 'desc': "first spark dag task"
  174. }