import cv2 import numpy as np def detect_angle(image): mask = np.zeros(image.shape, dtype=np.uint8) gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) blur = cv2.GaussianBlur(gray, (3,3), 0) adaptive = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV,15,4) cnts = cv2.findContours(adaptive, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cnts = cnts[0] if len(cnts) == 2 else cnts[1] for c in cnts: area = cv2.contourArea(c) if area < 45000 and area > 20: cv2.drawContours(mask, [c], -1, (255,255,255), -1) mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) h, w = mask.shape # Horizontal if w > h: left = mask[0:h, 0:0+w//2] right = mask[0:h, w//2:] left_pixels = cv2.countNonZero(left) right_pixels = cv2.countNonZero(right) return 0 if left_pixels >= right_pixels else 180 # Vertical else: top = mask[0:h//2, 0:w] bottom = mask[h//2:, 0:w] top_pixels = cv2.countNonZero(top) bottom_pixels = cv2.countNonZero(bottom) return 90 if bottom_pixels >= top_pixels else 270 if __name__ == '__main__': image = cv2.imread('d40.jpg') angle = detect_angle(image) print(angle)