123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499 |
- #
- # Copyright 2018-2022 Elyra Authors
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import os
- from pathlib import Path
- import tarfile
- from unittest import mock
- from kfp import compiler as kfp_argo_compiler
- import pytest
- import yaml
- from elyra.metadata.metadata import Metadata
- from elyra.pipeline.catalog_connector import FilesystemComponentCatalogConnector
- from elyra.pipeline.catalog_connector import UrlComponentCatalogConnector
- from elyra.pipeline.component import Component
- from elyra.pipeline.kfp.processor_kfp import KfpPipelineProcessor
- from elyra.pipeline.parser import PipelineParser
- from elyra.pipeline.pipeline import GenericOperation
- from elyra.pipeline.pipeline import Operation
- from elyra.pipeline.pipeline import Pipeline
- from elyra.tests.pipeline.test_pipeline_parser import _read_pipeline_resource
- @pytest.fixture
- def processor(setup_factory_data):
- processor = KfpPipelineProcessor(os.getcwd())
- return processor
- @pytest.fixture
- def pipeline():
- pipeline_resource = _read_pipeline_resource("resources/sample_pipelines/pipeline_3_node_sample.json")
- return PipelineParser.parse(pipeline_resource)
- @pytest.fixture
- def sample_metadata():
- return {
- "api_endpoint": "http://examples.com:31737",
- "cos_endpoint": "http://examples.com:31671",
- "cos_username": "example",
- "cos_password": "example123",
- "cos_bucket": "test",
- "engine": "Argo",
- "tags": [],
- }
- def test_fail_get_metadata_configuration_invalid_namespace(processor):
- with pytest.raises(RuntimeError):
- processor._get_metadata_configuration(schemaspace="non_existent_namespace", name="non_existent_metadata")
- def test_generate_dependency_archive(processor):
- pipelines_test_file = processor.root_dir + "/elyra/tests/pipeline/resources/archive/test.ipynb"
- pipeline_dependencies = ["airflow.json"]
- correct_filelist = ["test.ipynb", "airflow.json"]
- component_parameters = {
- "filename": pipelines_test_file,
- "dependencies": pipeline_dependencies,
- "runtime_image": "tensorflow/tensorflow:latest",
- }
- test_operation = GenericOperation(
- id="123e4567-e89b-12d3-a456-426614174000",
- type="execution-node",
- classifier="execute-notebook-node",
- name="test",
- component_params=component_parameters,
- )
- archive_location = processor._generate_dependency_archive(test_operation)
- tar_content = []
- with tarfile.open(archive_location, "r:gz") as tar:
- for tarinfo in tar:
- if tarinfo.isreg():
- print(tarinfo.name)
- tar_content.append(tarinfo.name)
- assert sorted(correct_filelist) == sorted(tar_content)
- def test_fail_generate_dependency_archive(processor):
- pipelines_test_file = processor.root_dir + "/elyra/pipeline/tests/resources/archive/test.ipynb"
- pipeline_dependencies = ["non_existent_file.json"]
- component_parameters = {
- "filename": pipelines_test_file,
- "dependencies": pipeline_dependencies,
- "runtime_image": "tensorflow/tensorflow:latest",
- }
- test_operation = GenericOperation(
- id="123e4567-e89b-12d3-a456-426614174000",
- type="execution-node",
- classifier="execute-notebook-node",
- name="test",
- component_params=component_parameters,
- )
- with pytest.raises(Exception):
- processor._generate_dependency_archive(test_operation)
- def test_get_dependency_source_dir(processor):
- pipelines_test_file = "elyra/pipeline/tests/resources/archive/test.ipynb"
- processor.root_dir = "/this/is/an/abs/path/"
- correct_filepath = "/this/is/an/abs/path/elyra/pipeline/tests/resources/archive"
- component_parameters = {"filename": pipelines_test_file, "runtime_image": "tensorflow/tensorflow:latest"}
- test_operation = GenericOperation(
- id="123e4567-e89b-12d3-a456-426614174000",
- type="execution-node",
- classifier="execute-notebook-node",
- name="test",
- component_params=component_parameters,
- )
- filepath = processor._get_dependency_source_dir(test_operation)
- assert filepath == correct_filepath
- def test_get_dependency_archive_name(processor):
- pipelines_test_file = "elyra/pipeline/tests/resources/archive/test.ipynb"
- correct_filename = "test-this-is-a-test-id.tar.gz"
- component_parameters = {"filename": pipelines_test_file, "runtime_image": "tensorflow/tensorflow:latest"}
- test_operation = GenericOperation(
- id="this-is-a-test-id",
- type="execution-node",
- classifier="execute-notebook-node",
- name="test",
- component_params=component_parameters,
- )
- filename = processor._get_dependency_archive_name(test_operation)
- assert filename == correct_filename
- def test_collect_envs(processor):
- pipelines_test_file = "elyra/pipeline/tests/resources/archive/test.ipynb"
- # add system-owned envs with bogus values to ensure they get set to system-derived values,
- # and include some user-provided edge cases
- operation_envs = [
- 'ELYRA_RUNTIME_ENV="bogus_runtime"',
- 'ELYRA_ENABLE_PIPELINE_INFO="bogus_pipeline"',
- "ELYRA_WRITABLE_CONTAINER_DIR=", # simulate operation reference in pipeline
- 'AWS_ACCESS_KEY_ID="bogus_key"',
- 'AWS_SECRET_ACCESS_KEY="bogus_secret"',
- "USER_EMPTY_VALUE= ",
- "USER_TWO_EQUALS=KEY=value",
- "USER_NO_VALUE=",
- ]
- component_parameters = {
- "filename": pipelines_test_file,
- "env_vars": operation_envs,
- "runtime_image": "tensorflow/tensorflow:latest",
- }
- test_operation = GenericOperation(
- id="this-is-a-test-id",
- type="execution-node",
- classifier="execute-notebook-node",
- name="test",
- component_params=component_parameters,
- )
- envs = processor._collect_envs(test_operation, cos_secret=None, cos_username="Alice", cos_password="secret")
- assert envs["ELYRA_RUNTIME_ENV"] == "kfp"
- assert envs["AWS_ACCESS_KEY_ID"] == "Alice"
- assert envs["AWS_SECRET_ACCESS_KEY"] == "secret"
- assert envs["ELYRA_ENABLE_PIPELINE_INFO"] == "True"
- assert envs["ELYRA_WRITABLE_CONTAINER_DIR"] == "/tmp"
- assert "USER_EMPTY_VALUE" not in envs
- assert envs["USER_TWO_EQUALS"] == "KEY=value"
- assert "USER_NO_VALUE" not in envs
- # Repeat with non-None secret - ensure user and password envs are not present, but others are
- envs = processor._collect_envs(test_operation, cos_secret="secret", cos_username="Alice", cos_password="secret")
- assert envs["ELYRA_RUNTIME_ENV"] == "kfp"
- assert "AWS_ACCESS_KEY_ID" not in envs
- assert "AWS_SECRET_ACCESS_KEY" not in envs
- assert envs["ELYRA_ENABLE_PIPELINE_INFO"] == "True"
- assert envs["ELYRA_WRITABLE_CONTAINER_DIR"] == "/tmp"
- assert "USER_EMPTY_VALUE" not in envs
- assert envs["USER_TWO_EQUALS"] == "KEY=value"
- assert "USER_NO_VALUE" not in envs
- def test_process_list_value_function(processor):
- # Test values that will be successfully converted to list
- assert processor._process_list_value("") == []
- assert processor._process_list_value(None) == []
- assert processor._process_list_value("[]") == []
- assert processor._process_list_value("None") == []
- assert processor._process_list_value("['elem1']") == ["elem1"]
- assert processor._process_list_value("['elem1', 'elem2', 'elem3']") == ["elem1", "elem2", "elem3"]
- assert processor._process_list_value(" ['elem1', 'elem2' , 'elem3'] ") == ["elem1", "elem2", "elem3"]
- assert processor._process_list_value("[1, 2]") == [1, 2]
- assert processor._process_list_value("[True, False, True]") == [True, False, True]
- assert processor._process_list_value("[{'obj': 'val', 'obj2': 'val2'}, {}]") == [{"obj": "val", "obj2": "val2"}, {}]
- # Test values that will not be successfully converted to list
- assert processor._process_list_value("[[]") == "[[]"
- assert processor._process_list_value("[elem1, elem2]") == "[elem1, elem2]"
- assert processor._process_list_value("elem1, elem2") == "elem1, elem2"
- assert processor._process_list_value(" elem1, elem2 ") == "elem1, elem2"
- assert processor._process_list_value("'elem1', 'elem2'") == "'elem1', 'elem2'"
- def test_process_dictionary_value_function(processor):
- # Test values that will be successfully converted to dictionary
- assert processor._process_dictionary_value("") == {}
- assert processor._process_dictionary_value(None) == {}
- assert processor._process_dictionary_value("{}") == {}
- assert processor._process_dictionary_value("None") == {}
- assert processor._process_dictionary_value("{'key': 'value'}") == {"key": "value"}
- dict_as_str = "{'key1': 'value', 'key2': 'value'}"
- assert processor._process_dictionary_value(dict_as_str) == {"key1": "value", "key2": "value"}
- dict_as_str = " { 'key1': 'value' , 'key2' : 'value'} "
- assert processor._process_dictionary_value(dict_as_str) == {"key1": "value", "key2": "value"}
- dict_as_str = "{'key1': [1, 2, 3], 'key2': ['elem1', 'elem2']}"
- assert processor._process_dictionary_value(dict_as_str) == {"key1": [1, 2, 3], "key2": ["elem1", "elem2"]}
- dict_as_str = "{'key1': 2, 'key2': 'value', 'key3': True, 'key4': None, 'key5': [1, 2, 3]}"
- expected_value = {"key1": 2, "key2": "value", "key3": True, "key4": None, "key5": [1, 2, 3]}
- assert processor._process_dictionary_value(dict_as_str) == expected_value
- dict_as_str = "{'key1': {'key2': 2, 'key3': 3, 'key4': 4}, 'key5': {}}"
- expected_value = {
- "key1": {
- "key2": 2,
- "key3": 3,
- "key4": 4,
- },
- "key5": {},
- }
- assert processor._process_dictionary_value(dict_as_str) == expected_value
- # Test values that will not be successfully converted to dictionary
- assert processor._process_dictionary_value("{{}") == "{{}"
- assert processor._process_dictionary_value("{key1: value, key2: value}") == "{key1: value, key2: value}"
- assert processor._process_dictionary_value(" { key1: value, key2: value } ") == "{ key1: value, key2: value }"
- assert processor._process_dictionary_value("key1: value, key2: value") == "key1: value, key2: value"
- assert processor._process_dictionary_value("{'key1': true}") == "{'key1': true}"
- assert processor._process_dictionary_value("{'key': null}") == "{'key': null}"
- dict_as_str = "{'key1': [elem1, elem2, elem3], 'key2': ['elem1', 'elem2']}"
- assert processor._process_dictionary_value(dict_as_str) == dict_as_str
- dict_as_str = "{'key1': {key2: 2}, 'key3': ['elem1', 'elem2']}"
- assert processor._process_dictionary_value(dict_as_str) == dict_as_str
- dict_as_str = "{'key1': {key2: 2}, 'key3': ['elem1', 'elem2']}"
- assert processor._process_dictionary_value(dict_as_str) == dict_as_str
- def test_processing_url_runtime_specific_component(monkeypatch, processor, component_cache, sample_metadata, tmpdir):
- # Define the appropriate reader for a URL-type component definition
- kfp_supported_file_types = [".yaml"]
- reader = UrlComponentCatalogConnector(kfp_supported_file_types)
- # Assign test resource location
- url = (
- "https://raw.githubusercontent.com/elyra-ai/elyra/master/"
- "elyra/tests/pipeline/resources/components/filter_text.yaml"
- )
- # Read contents of given path -- read_component_definition() returns a
- # a dictionary of component definition content indexed by path
- entry_data = reader.get_entry_data({"url": url}, {})
- component_definition = entry_data.definition
- # Instantiate a url-based component
- component_id = "test_component"
- component = Component(
- id=component_id,
- name="Filter text",
- description="",
- op="filter-text",
- catalog_type="url-catalog",
- component_reference={"url": url},
- definition=component_definition,
- categories=[],
- properties=[],
- )
- # Fabricate the component cache to include single filename-based component for testing
- component_cache._component_cache[processor._type.name] = {
- "spoofed_catalog": {"components": {component_id: component}}
- }
- # Construct hypothetical operation for component
- operation_name = "Filter text test"
- operation_params = {"text": "path/to/text.txt", "pattern": "hello"}
- operation = Operation(
- id="filter-text-id",
- type="execution_node",
- classifier=component_id,
- name=operation_name,
- parent_operation_ids=[],
- component_params=operation_params,
- )
- # Build a mock runtime config for use in _cc_pipeline
- mocked_runtime = Metadata(name="test-metadata", display_name="test", schema_name="kfp", metadata=sample_metadata)
- mocked_func = mock.Mock(return_value="default", side_effect=[mocked_runtime, sample_metadata])
- monkeypatch.setattr(processor, "_get_metadata_configuration", mocked_func)
- # Construct single-operation pipeline
- pipeline = Pipeline(
- id="pipeline-id", name="kfp_test", runtime="kfp", runtime_config="test", source="filter_text.pipeline"
- )
- pipeline.operations[operation.id] = operation
- # Establish path and function to construct pipeline
- pipeline_path = os.path.join(tmpdir, "kfp_test.yaml")
- constructed_pipeline_function = lambda: processor._cc_pipeline(pipeline=pipeline, pipeline_name="test_pipeline")
- # TODO Check against both argo and tekton compilations
- # Compile pipeline and save into pipeline_path
- kfp_argo_compiler.Compiler().compile(constructed_pipeline_function, pipeline_path)
- # Read contents of pipeline YAML
- with open(pipeline_path) as f:
- pipeline_yaml = yaml.safe_load(f.read())
- # Check the pipeline file contents for correctness
- pipeline_template = pipeline_yaml["spec"]["templates"][0]
- assert pipeline_template["metadata"]["annotations"]["pipelines.kubeflow.org/task_display_name"] == operation_name
- assert pipeline_template["inputs"]["artifacts"][0]["raw"]["data"] == operation_params["text"]
- def test_processing_filename_runtime_specific_component(
- monkeypatch, processor, component_cache, sample_metadata, tmpdir
- ):
- # Define the appropriate reader for a filesystem-type component definition
- kfp_supported_file_types = [".yaml"]
- reader = FilesystemComponentCatalogConnector(kfp_supported_file_types)
- # Assign test resource location
- absolute_path = os.path.abspath(
- os.path.join(os.path.dirname(__file__), "..", "resources", "components", "download_data.yaml")
- )
- # Read contents of given path -- read_component_definition() returns a
- # a dictionary of component definition content indexed by path
- entry_data = reader.get_entry_data({"path": absolute_path}, {})
- component_definition = entry_data.definition
- # Instantiate a file-based component
- component_id = "test-component"
- component = Component(
- id=component_id,
- name="Download data",
- description="",
- op="download-data",
- catalog_type="elyra-kfp-examples-catalog",
- component_reference={"path": absolute_path},
- definition=component_definition,
- properties=[],
- categories=[],
- )
- # Fabricate the component cache to include single filename-based component for testing
- component_cache._component_cache[processor._type.name] = {
- "spoofed_catalog": {"components": {component_id: component}}
- }
- # Construct hypothetical operation for component
- operation_name = "Download data test"
- operation_params = {
- "url": "https://raw.githubusercontent.com/elyra-ai/elyra/master/tests/assets/helloworld.ipynb",
- "curl_options": "--location",
- }
- operation = Operation(
- id="download-data-id",
- type="execution_node",
- classifier=component_id,
- name=operation_name,
- parent_operation_ids=[],
- component_params=operation_params,
- )
- # Build a mock runtime config for use in _cc_pipeline
- mocked_runtime = Metadata(name="test-metadata", display_name="test", schema_name="kfp", metadata=sample_metadata)
- mocked_func = mock.Mock(return_value="default", side_effect=[mocked_runtime, sample_metadata])
- monkeypatch.setattr(processor, "_get_metadata_configuration", mocked_func)
- # Construct single-operation pipeline
- pipeline = Pipeline(
- id="pipeline-id", name="kfp_test", runtime="kfp", runtime_config="test", source="download_data.pipeline"
- )
- pipeline.operations[operation.id] = operation
- # Establish path and function to construct pipeline
- pipeline_path = os.path.join(tmpdir, "kfp_test.yaml")
- constructed_pipeline_function = lambda: processor._cc_pipeline(pipeline=pipeline, pipeline_name="test_pipeline")
- # TODO Check against both argo and tekton compilations
- # Compile pipeline and save into pipeline_path
- kfp_argo_compiler.Compiler().compile(constructed_pipeline_function, pipeline_path)
- # Read contents of pipeline YAML
- with open(pipeline_path) as f:
- pipeline_yaml = yaml.safe_load(f.read())
- # Check the pipeline file contents for correctness
- pipeline_template = pipeline_yaml["spec"]["templates"][0]
- assert pipeline_template["metadata"]["annotations"]["pipelines.kubeflow.org/task_display_name"] == operation_name
- assert pipeline_template["container"]["command"][3] == operation_params["url"]
- def test_cc_pipeline_component_no_input(monkeypatch, processor, component_cache, sample_metadata, tmpdir):
- """
- Verifies that cc_pipeline can handle KFP component definitions that don't
- include any inputs
- """
- # Define the appropriate reader for a filesystem-type component definition
- kfp_supported_file_types = [".yaml"]
- reader = FilesystemComponentCatalogConnector(kfp_supported_file_types)
- # Assign test resource location
- cpath = (Path(__file__).parent / ".." / "resources" / "components" / "kfp_test_operator_no_inputs.yaml").resolve()
- assert cpath.is_file()
- cpath = str(cpath)
- # Read contents of given path -- read_component_definition() returns a
- # a dictionary of component definition content indexed by path
- entry_data = reader.get_entry_data({"path": cpath}, {})
- component_definition = entry_data.definition
- # Instantiate a file-based component
- component_id = "test-component"
- component = Component(
- id=component_id,
- name="No input data",
- description="",
- op="no-input-data",
- catalog_type="elyra-kfp-examples-catalog",
- component_reference={"path": cpath},
- definition=component_definition,
- properties=[],
- categories=[],
- )
- # Fabricate the component cache to include single filename-based component for testing
- component_cache._component_cache[processor._type.name] = {
- "spoofed_catalog": {"components": {component_id: component}}
- }
- # Construct hypothetical operation for component
- operation_name = "no-input-test"
- operation_params = {}
- operation = Operation(
- id="no-input-id",
- type="execution_node",
- classifier=component_id,
- name=operation_name,
- parent_operation_ids=[],
- component_params=operation_params,
- )
- # Build a mock runtime config for use in _cc_pipeline
- mocked_runtime = Metadata(name="test-metadata", display_name="test", schema_name="kfp", metadata=sample_metadata)
- mocked_func = mock.Mock(return_value="default", side_effect=[mocked_runtime, sample_metadata])
- monkeypatch.setattr(processor, "_get_metadata_configuration", mocked_func)
- # Construct single-operation pipeline
- pipeline = Pipeline(
- id="pipeline-id", name="kfp_test", runtime="kfp", runtime_config="test", source="no_input.pipeline"
- )
- pipeline.operations[operation.id] = operation
- constructed_pipeline_function = lambda: processor._cc_pipeline(pipeline=pipeline, pipeline_name="test_pipeline")
- pipeline_path = str(Path(tmpdir) / "no_inputs_test.yaml")
- # Compile pipeline and save into pipeline_path
- kfp_argo_compiler.Compiler().compile(constructed_pipeline_function, pipeline_path)
|