# vega5-extension A JupyterLab extension for rendering [Vega](https://vega.github.io/vega) 5 and [Vega-Lite](https://vega.github.io/vega-lite) 3. ![demo](http://g.recordit.co/USoTkuCOfR.gif) ## Prerequisites - JupyterLab ^0.27.0 ## Usage To render Vega-Lite output in IPython: ```python from IPython.display import display display({ "application/vnd.vegalite.v3+json": { "$schema": "https://vega.github.io/schema/vega-lite/v3.json", "description": "A simple bar chart with embedded data.", "data": { "values": [ {"a": "A", "b": 28}, {"a": "B", "b": 55}, {"a": "C", "b": 43}, {"a": "D", "b": 91}, {"a": "E", "b": 81}, {"a": "F", "b": 53}, {"a": "G", "b": 19}, {"a": "H", "b": 87}, {"a": "I", "b": 52} ] }, "mark": "bar", "encoding": { "x": {"field": "a", "type": "ordinal"}, "y": {"field": "b", "type": "quantitative"} } } }, raw=True) ``` Using the [Altair library](https://github.com/altair-viz/altair): ```python import altair as alt cars = alt.load_dataset('cars') chart = alt.Chart(cars).mark_point().encode( x='Horsepower', y='Miles_per_Gallon', color='Origin', ) chart ``` Provide Vega-Embed options via metadata: ```python from IPython.display import display display({ "application/vnd.vegalite.v3+json": { "$schema": "https://vega.github.io/schema/vega-lite/v3.json", "description": "A simple bar chart with embedded data.", "data": { "values": [ {"a": "A", "b": 28}, {"a": "B", "b": 55}, {"a": "C", "b": 43}, {"a": "D", "b": 91}, {"a": "E", "b": 81}, {"a": "F", "b": 53}, {"a": "G", "b": 19}, {"a": "H", "b": 87}, {"a": "I", "b": 52} ] }, "mark": "bar", "encoding": { "x": {"field": "a", "type": "ordinal"}, "y": {"field": "b", "type": "quantitative"} } } }, metadata={ "application/vnd.vegalite.v2+json": { "embed_options": { "actions": False } } }, raw=True) ``` Provide Vega-Embed options via Altair: ```python import altair as alt alt.renderers.enable('default', embed_options={'actions': False}) cars = alt.load_dataset('cars') chart = alt.Chart(cars).mark_point().encode( x='Horsepower', y='Miles_per_Gallon', color='Origin', ) chart ``` To render a `.vl`, `.vg`, `vl.json` or `.vg.json` file, simply open it: ## Development See the [JupyterLab Contributor Documentation](https://github.com/jupyterlab/jupyterlab/blob/master/CONTRIBUTING.md).