GitHub Action 2be6f2eb9f [ci skip] New version 2 年之前
..
src 4904553858 Backport PR #12411 on branch 3.4.x (Uses dark theme for Vega when JupyterLab theme is dark) (#12450) 3 年之前
style cc24b91e54 Backport PR #12378: Changes Vega class name to match source code (#12385) 3 年之前
README.md 85ad42ab4b Update branch name in doc urls and workflow files 3 年之前
package.json 2be6f2eb9f [ci skip] New version 2 年之前
tsconfig.json 43570ea332 full revert of rendermime-interfaces; totally removed iconRenderer 5 年之前
typedoc.json 9b42db0c8a Update typedoc config for 0.20 beta 27 4 年之前

README.md

vega5-extension

A JupyterLab extension for rendering Vega 5 and Vega-Lite 3.

demo

This extension is in the official JupyterLab distribution.

Usage

To render Vega-Lite output in IPython:

from IPython.display import display

display({
    "application/vnd.vegalite.v3+json": {
        "$schema": "https://vega.github.io/schema/vega-lite/v3.json",
        "description": "A simple bar chart with embedded data.",
        "data": {
            "values": [
                {"a": "A", "b": 28}, {"a": "B", "b": 55}, {"a": "C", "b": 43},
                {"a": "D", "b": 91}, {"a": "E", "b": 81}, {"a": "F", "b": 53},
                {"a": "G", "b": 19}, {"a": "H", "b": 87}, {"a": "I", "b": 52}
            ]
        },
        "mark": "bar",
        "encoding": {
            "x": {"field": "a", "type": "ordinal"},
            "y": {"field": "b", "type": "quantitative"}
        }
    }
}, raw=True)

Using the Altair library:

import altair as alt

cars = alt.load_dataset('cars')

chart = alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
)

chart

Provide Vega-Embed options via metadata:

from IPython.display import display

display({
    "application/vnd.vegalite.v3+json": {
        "$schema": "https://vega.github.io/schema/vega-lite/v3.json",
        "description": "A simple bar chart with embedded data.",
        "data": {
            "values": [
                {"a": "A", "b": 28}, {"a": "B", "b": 55}, {"a": "C", "b": 43},
                {"a": "D", "b": 91}, {"a": "E", "b": 81}, {"a": "F", "b": 53},
                {"a": "G", "b": 19}, {"a": "H", "b": 87}, {"a": "I", "b": 52}
            ]
        },
        "mark": "bar",
        "encoding": {
            "x": {"field": "a", "type": "ordinal"},
            "y": {"field": "b", "type": "quantitative"}
        }
    }
}, metadata={
    "application/vnd.vegalite.v2+json": {
        "embed_options": {
            "actions": False
        }
    }
}, raw=True)

Provide Vega-Embed options via Altair:

import altair as alt

alt.renderers.enable('default', embed_options={'actions': False})

cars = alt.load_dataset('cars')

chart = alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
)

chart

To render a .vl, .vg, vl.json or .vg.json file, simply open it:

Development

See the JupyterLab Contributor Documentation.