|
@@ -0,0 +1,182 @@
|
|
|
|
+"""
|
|
|
|
+function: 生成md文件
|
|
|
|
+"""
|
|
|
|
+from mdutils.mdutils import MdUtils
|
|
|
|
+import os
|
|
|
|
+import cv2
|
|
|
|
+import numpy as np
|
|
|
|
+import requests
|
|
|
|
+
|
|
|
|
+d_map = {0: 'code', 1: 'logo', 2: 'style', 3: 'table', 4: 'text', 5: 'title'}
|
|
|
|
+images_path = "./train/images/"
|
|
|
|
+labels_path = "./train/labels/"
|
|
|
|
+cut_ori_img_path = "./train/cut_ori_imgs/"
|
|
|
|
+cut_predict_img_path = "./train/cut_predict_imgs/"
|
|
|
|
+md_cut_ori_img_path = "../train/cut_ori_imgs/"
|
|
|
|
+md_cut_predict_img_path = "../train/cut_predict_imgs/"
|
|
|
|
+md_path = "mdfiles/"
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+# 标签是经过归一化的,需要变回来
|
|
|
|
+# xywh格式 ---> box四个顶点的坐标
|
|
|
|
+def xywh2lrbt(img_w, img_h, box):
|
|
|
|
+ c, x, y, w, h = int(box[0]), float(box[1]), float(box[2]), float(box[3]), float(box[4])
|
|
|
|
+ x = x * img_w # 中心坐标x
|
|
|
|
+ w = w * img_w # box的宽
|
|
|
|
+ y = y * img_h # 中心坐标y
|
|
|
|
+ h = h * img_h # box的高
|
|
|
|
+
|
|
|
|
+ lt_x, lt_y = x - w / 2, y - h / 2 # left_top_x, left_top_y
|
|
|
|
+ lb_x, lb_y = x - w / 2, y + h / 2 # left_bottom_x, left_bottom_y
|
|
|
|
+ rb_x, rb_y = x + w / 2, y + h / 2 # right_bottom_x, right_bottom_y
|
|
|
|
+ rt_x, rt_y = x + w / 2, y - h / 2 # right_top_x, right_bottom_y
|
|
|
|
+
|
|
|
|
+ lrbt = [[lt_x, lt_y], [lb_x, lb_y], [rb_x, rb_y], [rt_x, rt_y]]
|
|
|
|
+
|
|
|
|
+ return lrbt, c
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def IOU(rect1, rect2):
|
|
|
|
+ xmin1, ymin1, xmax1, ymax1 = rect1
|
|
|
|
+ xmin2, ymin2, xmax2, ymax2 = rect2
|
|
|
|
+ s1 = (xmax1 - xmin1) * (ymax1 - ymin1)
|
|
|
|
+ s2 = (xmax2 - xmin2) * (ymax2 - ymin2)
|
|
|
|
+
|
|
|
|
+ sum_area = s1 + s2
|
|
|
|
+
|
|
|
|
+ left = max(xmin2, xmin1)
|
|
|
|
+ right = min(xmax2, xmax1)
|
|
|
|
+ top = max(ymin2, ymin1)
|
|
|
|
+ bottom = min(ymax2, ymax1)
|
|
|
|
+
|
|
|
|
+ if left >= right or top >= bottom:
|
|
|
|
+ return 0
|
|
|
|
+
|
|
|
|
+ intersection = (right - left) * (bottom - top)
|
|
|
|
+ return intersection / (sum_area - intersection) * 1.0
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def send_requests(img_path):
|
|
|
|
+ b_img_list = []
|
|
|
|
+ b_img_list.append(('file_list', ('image.jpeg', open(img_path, 'rb'), 'image/jpeg')))
|
|
|
|
+ payload = {'model_name': 'ocr-layout', 'img_size': 1920, 'download_image': False}
|
|
|
|
+ response = requests.request("POST", "http://192.168.199.249:4869/detect", headers={}, data=payload,
|
|
|
|
+ files=b_img_list)
|
|
|
|
+ result = eval(str(response.text))
|
|
|
|
+ result = eval(str(result['result']))
|
|
|
|
+ return result
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+if __name__ == "__main__":
|
|
|
|
+ list_images = os.listdir(images_path)
|
|
|
|
+ list_labels = os.listdir(labels_path)
|
|
|
|
+ all_acc = 0
|
|
|
|
+ all_label_len = 0
|
|
|
|
+
|
|
|
|
+ # 遍历每张图片
|
|
|
|
+ for m in range(len(list_images)):
|
|
|
|
+ each_acc_map = {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0} # 每张图片对应的各自预测正确数量
|
|
|
|
+ each_acc = 0 # 每张图片总共预测正确的数量
|
|
|
|
+
|
|
|
|
+ image = list_images[m]
|
|
|
|
+ img_name = image.split(".")[0]
|
|
|
|
+ # if image != "125-------------_jpg.rf.9a0d958c405ffb596b4022e13f0686b7.jpg":
|
|
|
|
+ # continue
|
|
|
|
+ for n in range(len(list_labels)):
|
|
|
|
+ label = list_labels[n]
|
|
|
|
+ label_name = label.split(".")[0]
|
|
|
|
+ if img_name != label_name:
|
|
|
|
+ continue
|
|
|
|
+ if img_name == label_name:
|
|
|
|
+ print(image)
|
|
|
|
+ print(label)
|
|
|
|
+ print("===========")
|
|
|
|
+ # 每张图都创建一个md文件
|
|
|
|
+ mdFile = MdUtils(file_name=md_path+'yq_0819_' + str(img_name), title='yq_0819_' + str(img_name) + '_iou>=0.5')
|
|
|
|
+ list_item = ["ori_cla", "predict_cla", "cut_ori_img", "cut_predict_img", "isTrue"]
|
|
|
|
+
|
|
|
|
+ result = send_requests(images_path + image)
|
|
|
|
+
|
|
|
|
+ img = cv2.imread(images_path + image)
|
|
|
|
+ img_h, img_w, _ = img.shape
|
|
|
|
+ # 获取原图上的切割结果
|
|
|
|
+ arr_label = [] # labels的边界框,存储四个顶点坐标
|
|
|
|
+ ori_clas = [] # label的真实类别
|
|
|
|
+ with open(labels_path + label, mode="r", encoding="utf-8") as f:
|
|
|
|
+ lines = f.readlines()
|
|
|
|
+ for line in lines:
|
|
|
|
+ line = line.split(" ")
|
|
|
|
+ lrbt, c = xywh2lrbt(img_w, img_h, line)
|
|
|
|
+ arr_label.append(lrbt)
|
|
|
|
+ ori_clas.append(c)
|
|
|
|
+
|
|
|
|
+ all_label_len += len(lines) # 所有标签的数量,为了后面计算所有图片的准确度
|
|
|
|
+
|
|
|
|
+ num = 0
|
|
|
|
+ for i in range(len(arr_label)):
|
|
|
|
+ lt_x, lt_y = int(arr_label[i][0][0]), int(arr_label[i][0][1])
|
|
|
|
+ rb_x, rb_y = int(arr_label[i][2][0]), int(arr_label[i][2][1])
|
|
|
|
+ rect1 = [lt_x, lt_y, rb_x, rb_y]
|
|
|
|
+
|
|
|
|
+ # 切割真实标签,并保存到本地
|
|
|
|
+ cut_ori_img = img[lt_y:rb_y, lt_x:rb_x, :]
|
|
|
|
+ save_cut_ori_img = cut_ori_img_path + str(img_name) + "_" + str(num) + ".jpg"
|
|
|
|
+ cv2.imwrite(save_cut_ori_img, cut_ori_img)
|
|
|
|
+ save_cut_ori_img = mdFile.new_inline_image(text='', path=md_cut_ori_img_path+ str(img_name) + "_" + str(num) + ".jpg")
|
|
|
|
+ ori_cla = int(ori_clas[i])
|
|
|
|
+ print("此时的ori_cla:", d_map[ori_cla])
|
|
|
|
+ num += 1
|
|
|
|
+
|
|
|
|
+ for j in range(len(result[0])):
|
|
|
|
+ res = []
|
|
|
|
+ predict_cla = int(result[0][j]['class'])
|
|
|
|
+ print("此时的predict_cla:", d_map[predict_cla])
|
|
|
|
+ if ori_cla == predict_cla or (ori_cla in [2, 3, 4] and predict_cla in [2, 3, 4]):
|
|
|
|
+ rect2 = result[0][j]['bbox']
|
|
|
|
+ iou = IOU(rect1, rect2)
|
|
|
|
+ if iou >= 0.5:
|
|
|
|
+ # 切割预测结果
|
|
|
|
+ cut_predict_img = img[rect2[1]:rect2[3], rect2[0]:rect2[2], :]
|
|
|
|
+ save_cut_predict_img = cut_predict_img_path + str(img_name) + "_" + str(
|
|
|
|
+ j) + ".jpg"
|
|
|
|
+ cv2.imwrite(save_cut_predict_img, cut_predict_img)
|
|
|
|
+ save_cut_predict_img = mdFile.new_inline_image(text='', path=md_cut_predict_img_path+ str(img_name) + "_" + str(j) + ".jpg")
|
|
|
|
+ isTrue = True
|
|
|
|
+ list_item.extend(
|
|
|
|
+ [d_map[ori_cla], d_map[predict_cla], save_cut_ori_img, save_cut_predict_img,
|
|
|
|
+ isTrue])
|
|
|
|
+ each_acc_map[ori_cla] += 1
|
|
|
|
+ all_acc += 1
|
|
|
|
+ each_acc += 1
|
|
|
|
+ break
|
|
|
|
+ if j == len(result[0]) - 1:
|
|
|
|
+ isTrue = False
|
|
|
|
+ list_item.extend([d_map[ori_cla], " ", save_cut_ori_img, " ", isTrue])
|
|
|
|
+ list_item.extend(res)
|
|
|
|
+
|
|
|
|
+ # 每一张图片的总准确度
|
|
|
|
+ each_acc = round(each_acc / len(ori_clas), 3)
|
|
|
|
+ # 每一类的准确度
|
|
|
|
+ code = round(each_acc_map[0] / ori_clas.count(0), 3) if ori_clas.count(0) else "这张图没有这个标签"
|
|
|
|
+ logo = round(each_acc_map[1] / ori_clas.count(1), 3) if ori_clas.count(1) else "这张图没有这个标签"
|
|
|
|
+ style = round(each_acc_map[2] / ori_clas.count(2), 3) if ori_clas.count(2) else "这张图没有这个标签"
|
|
|
|
+ table = round(each_acc_map[3] / ori_clas.count(3), 3) if ori_clas.count(3) else "这张图没有这个标签"
|
|
|
|
+ text = round(each_acc_map[4] / ori_clas.count(4), 3) if ori_clas.count(4) else "这张图没有这个标签"
|
|
|
|
+ title = round(each_acc_map[5] / ori_clas.count(5), 3) if ori_clas.count(5) else "这张图没有这个标签"
|
|
|
|
+
|
|
|
|
+ mdFile.new_line(str(image) + "—总准确率:" + str(each_acc))
|
|
|
|
+ mdFile.new_line(str(d_map[0]) + "—准确率:" + str(code))
|
|
|
|
+ mdFile.new_line(str(d_map[1]) + "—准确率:" + str(logo))
|
|
|
|
+ mdFile.new_line(str(d_map[2]) + "—准确率:" + str(style))
|
|
|
|
+ mdFile.new_line(str(d_map[3]) + "—准确率:" + str(table))
|
|
|
|
+ mdFile.new_line(str(d_map[4]) + "—准确率:" + str(text))
|
|
|
|
+ mdFile.new_line(str(d_map[5]) + "—准确率:" + str(title))
|
|
|
|
+
|
|
|
|
+ break
|
|
|
|
+
|
|
|
|
+ mdFile.new_line()
|
|
|
|
+ mdFile.new_table(columns=5, rows=len(list_item) // 5, text=list_item, text_align='center')
|
|
|
|
+ mdFile.create_md_file()
|
|
|
|
+
|
|
|
|
+ print(all_acc, all_label_len)
|
|
|
|
+ print("所有图片的预测准确度:", all_acc / all_label_len)
|