123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- from pyspark.sql import SparkSession
- from pyspark.sql.types import *
- from pyspark.ml.classification import LogisticRegression
- from pyspark.ml.feature import VectorAssembler
- from pyspark.ml import Pipeline
- from pyspark.sql.functions import udf, col
- input_path_1 = "hdfs://192.168.199.27:9000/user/sxkj/train.txt"
- input_path_2 = "hdfs://192.168.199.27:9000/user/sxkj/test.txt"
- output_path = "hdfs://192.168.199.27:9000/tmp/sparkDemo/${ModelType}"
- def getFeatureName():
- featureLst = ['feature1', 'feature2', 'feature3', 'feature4', 'feature5', 'feature6', 'feature7', 'feature8',
- 'feature9']
- colLst = ['uid', 'label'] + featureLst
- return featureLst, colLst
- def parseFloat(x):
- try:
- rx = float(x)
- except:
- rx = 0.0
- return rx
- def getDict(dictDataLst, colLst):
- dictData = {}
- for i in range(len(colLst)):
- dictData[colLst[i]] = parseFloat(dictDataLst[i])
- return dictData
- def to_array(col):
- def to_array_(v):
- return v.toArray().tolist()
- # Important: asNondeterministic requires Spark 2.3 or later
- # It can be safely removed i.e.
- # return udf(to_array_, ArrayType(DoubleType()))(col)
- # but at the cost of decreased performance
- return udf(to_array_, ArrayType(DoubleType())).asNondeterministic()(col)
- def main():
- # spark = SparkSession.builder.master("yarn").appName("spark_demo").getOrCreate()
- spark = SparkSession.builder.getOrCreate()
- print("Session created!")
- sc = spark.sparkContext
- print("applicaton id: " + sc.applicationId)
- sampleHDFS_train = input_path_1 #sys.argv[1]
- sampleHDFS_test = input_path_2 #sys.argv[2]
- outputHDFS = output_path #sys.argv[3]
- featureLst, colLst = getFeatureName()
- # 读取hdfs上数据,将RDD转为DataFrame
- # 训练数据
- rdd_train = sc.textFile(sampleHDFS_train)
- rowRDD_train = rdd_train.map(lambda x: getDict(x.split('\t'), colLst))
- trainDF = spark.createDataFrame(rowRDD_train)
- # 测试数据
- rdd_test = sc.textFile(sampleHDFS_test)
- rowRDD_test = rdd_test.map(lambda x: getDict(x.split('\t'), colLst))
- testDF = spark.createDataFrame(rowRDD_test)
- # 用于训练的特征featureLst
- vectorAssembler = VectorAssembler().setInputCols(featureLst).setOutputCol("features")
- #### 训练 ####
- print("step 1")
- lr = LogisticRegression(regParam=0.01, maxIter=100) # regParam 正则项参数
- pipeline = Pipeline(stages=[vectorAssembler, lr])
- model = pipeline.fit(trainDF)
- # 打印参数
- print("\n-------------------------------------------------------------------------")
- print("LogisticRegression parameters:\n" + lr.explainParams() + "\n")
- print("-------------------------------------------------------------------------\n")
- #### 预测, 保存结果 ####
- print("step 2")
- labelsAndPreds = model.transform(testDF).withColumn("probability_xj", to_array(col("probability"))[1]) \
- .select("uid", "label", "prediction", "probability_xj")
- labelsAndPreds.show()
- labelsAndPreds.write.mode("overwrite").options(header="true").csv(outputHDFS + "/target/output")
- #### 评估不同阈值下的准确率、召回率
- print("step 3")
- labelsAndPreds_label_1 = labelsAndPreds.where(labelsAndPreds.label == 1)
- labelsAndPreds_label_0 = labelsAndPreds.where(labelsAndPreds.label == 0)
- labelsAndPreds_label_1.show(3)
- labelsAndPreds_label_0.show(3)
- t_cnt = labelsAndPreds_label_1.count()
- f_cnt = labelsAndPreds_label_0.count()
- print("thre\ttp\ttn\tfp\tfn\taccuracy\trecall")
- for thre in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]:
- tp = labelsAndPreds_label_1.where(labelsAndPreds_label_1.probability_xj > thre).count()
- tn = t_cnt - tp
- fp = labelsAndPreds_label_0.where(labelsAndPreds_label_0.probability_xj > thre).count()
- fn = f_cnt - fp
- print("%.1f\t%d\t%d\t%d\t%d\t%.4f\t%.4f" % (thre, tp, tn, fp, fn, float(tp) / (tp + fp), float(tp) / (t_cnt)))
- # 保存模型
- model.write().overwrite().save(outputHDFS + "/target/model/lrModel")
- # 加载模型
- # model.load(outputHDFS + "/target/model/lrModel")
- print("output:", outputHDFS)
- if __name__ == '__main__':
- main()
|