123456789101112131415161718192021222324252627282930313233343536373839 |
- import cv2
- import numpy as np
- def detect_angle(image):
- mask = np.zeros(image.shape, dtype=np.uint8)
- gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
- blur = cv2.GaussianBlur(gray, (3,3), 0)
- adaptive = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV,15,4)
- cnts = cv2.findContours(adaptive, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
- cnts = cnts[0] if len(cnts) == 2 else cnts[1]
- for c in cnts:
- area = cv2.contourArea(c)
- if area < 45000 and area > 20:
- cv2.drawContours(mask, [c], -1, (255,255,255), -1)
- mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
- h, w = mask.shape
-
- # Horizontal
- if w > h:
- left = mask[0:h, 0:0+w//2]
- right = mask[0:h, w//2:]
- left_pixels = cv2.countNonZero(left)
- right_pixels = cv2.countNonZero(right)
- return 0 if left_pixels >= right_pixels else 180
- # Vertical
- else:
- top = mask[0:h//2, 0:w]
- bottom = mask[h//2:, 0:w]
- top_pixels = cv2.countNonZero(top)
- bottom_pixels = cv2.countNonZero(bottom)
- return 90 if bottom_pixels >= top_pixels else 270
- if __name__ == '__main__':
- image = cv2.imread('d40.jpg')
- angle = detect_angle(image)
- print(angle)
|